RB Flexible Coupling

Brochure

RENUL

Contents

Renold Couplings	3
RB Flexible Coupling	4
RB Typical Applications	5
RB Shaft to shaft	6
RB Shaft to shaft with increase shaft engagement	7
RB standard SAE flywheel to shaft	8-9
RB standard SAE flywheel to shaft with increased shaft engagement	10-11
Technical Data	12-14
Design Variations	15
Global services	16

Innovation Everyday

Renold have been driving industry forward through innovation since 1879. Renold Couplings drives industry the world over, from marine, cranes and hoists to manufacture, mass transportation and the pulp and paper industry. Our couplings connect machines to machines through stock solutions and bespoke-crafted connections, all manufactured in our high-tech engineering factories.

Engineering capability

A team of in-house design engineers work to continuously improve the existing product range, introduce new products and deliver innovative new solutions to our customers challenges.

British manufacturer

Since 1946 Renold Couplings have manufactured a full range of couplings and clutches.

Based in Cardiff, UK, we control the full design and manufacture process, bringing class leading quality and complete customer peace of mind.

Worldwide support

With manufacturing facilities in 4 continents and support offices in over 30 countries Renold Couplings can offer service that understands the requirements and challenges of your particular market.

Reliability

Renold rubber in compression couplings are designed and made to the highest of standards delivering a premium product with premium performance. Where hassle free operation, peace of mind and longevity of service count then Renold's rubber in compression couplings are the answer.

RB Flexible Coupling

A great work horse coupling that comes in a variety of configurations including shaft to shaft or shaft to flywheel arrangements. Replaceable rubber blocks enable tuned torsional vibration damping and the fail-safe design, along with Survey Society Type Approval, make it the obvious choice.

Coupling capacity

- Up to 41kNm torque
- Maximum 5,200rpm
- Up to 210mm bore

Applications

- Generator sets
- Pump sets
- Compressors
- Wind turbines
- Metal manufacture
- Bulk handling
- Pulp and paper industry
- General purpose industrial applications
- Marine Propulsion

Range options

- ABS, DNV, Lloyds, BV Type Approved
- Shaft to shaft
- Shaft to shaft with increased shaft engagement
- Flywheel to shaft
- Flywheel to shaft with increased shaft engagement

Construction details

- Spheroidal graphite to BS 2789 Grade 420/12
- Separate rubber elements with a choice of grade and hardness with SM70 shore hardness being the standard
- Rubber elements which are totally enclosed and loaded in compression General purpose, cost effective range, which is manufactured in SG iron for torques up to 41kNm

Features and benefits

- Fail-safe design ensures continued operation in the unlikely event of rubber damage
- Tuneable torsional damping delivers low vibratory driveline loads through optimised stiffness characteristics
- Low maintenance, lubrication-free solution requires minimal operational intervention, vastly reducing total cost of ownership
- Severe shock load protection avoids driveline failure in transient over-torque events
- Compensates for axial and radial misalignment between driven and driving equipment
- Pre-compressed rubber blocks provide zero backlash and reduced torque amplifications
- Survey Society Certification provides quality assurance enabling safe integration within a vessel's systems

RB Typical Applications

Generator set

Coupling fitted between the engine and alternator.

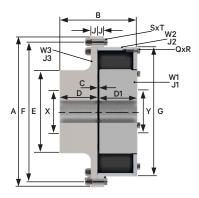
Pump sets


Coupling fitted between diesel engine and centrifugal pump.

Steel mills

Steel mills. Couplings fitted on 35 tonne overhead crane, and on table roller drives.

Industrial fans



Couplings fitted to table roller drives on rolling mills and furnace discharge tables.

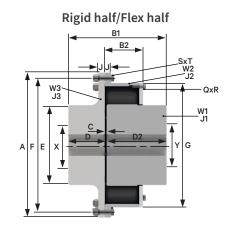
RB Shaft to Shaft

Rigid half/flex half

Features and benefits

- Can accommodate a wide range of shaft diameters
- Easy disconnection of the outer member and driving flange
- Coupling available with limited end float
- Allows the optimum coupling to be selected
- Allows the driving and driven machines to be disconnected
- Provides axial location for armatures with axial float

Dimensions, weight, inertia and alignment


Coupling size	<u></u>	0.12	0.2	0.24	0.37	0.73	1.15	2.15	3.86	5.5
	A	200.0	222.2	238.1	260.3	308.0	358.8	466.7	508.0	571.5
	В	104.8	111.2	123.8	136.5	174.6	193.7	233.4	260.4	285.8
						3.2		4.8		6.4
	C D	3.2	3.2	3.2	3.2	3.2 85.7	3.2		6.4	
		50.8	54.0	60.3	66.7		95.2	114.3	127.0	139.7
	D1 E	50.8	54.0	60.3	66.7	85.7	95.2	114.3	127.0	139.7 330.2
	F	79.4	95.2	101.6	120.6	152.4	184.1	222.2	279.4	542.92
		177.8	200.0	212.7	235.0	279.4	323.8	438.15	469.9	
Dimensions (mm)	G	156.5	178	186.5	210	251	295	362	435	501.5
	J	12.7	14.3	15.9	17.5	19.0	19.0	19.0	22.2	25.4
	Q	5	6	6	6	6	6	6	7	8
	R	M8	M8	M8	M10	M10	M12	M12	M12	M12
	S T	6	6	6	8	8	10	16	12	12
	MAX.X	M8 50	M8 60	M10 65	M10 80	M12 95	M12 115	M12 140	M16 170	M16 210
	MAX.Y	55	70	75	85	95	115	140	170	210
	MIN. X & Y	30	35	40	40	55	55	70	80	90
Rubber elements	Per cavity	1	1	1	1	1	1	1	1	1
Rubber eternents	Per coupling	10	12	12	12	12	12	12	14	16
Maximum Speed [rpm] (1)		5250	4725	4410	4035	3410	2925	2250	2070	1820
	W1	2.82	4.04	5.29	7.49	12.82	23.39	35.88	62.81	102.09
Weight (3) (kg)	W2	4.00	5.05	6.38	8.14	13.29	18.41	33.98	43.87	59.00
	W3	4.06	5.82	7.42	10.44	18.03	27.37	47.43	75.39	113.32
	J1	0.0044	0.0084	0.0131	0.0233	0.0563	0.1399	0.3227	0.8489	1.9633
Inertia (3) (kg m²)	J2	0.0232	0.0375	0.0546	0.0887	0.20	0.3674	1.1035	1.9161	3.4391
	J3	0.0153	0.027	0.0396	0.0644	0.1475	0.2862	0.7998	1.512	2.9796
Allowable misalignment (2)										
Radial (mm)		0.75	0.75	0.75	0.75	1.0	1.5	1.5	1.5	1.5
Axial (mm)		1.5	1.5	1.5	1.5	1.5	1.5	2.0	3.0	3.0
Conical (degree)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.

(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment overtime, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowables.

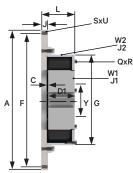
RB Shaft to Shaft with Increase Shaft Engagement

Features and benefits

- Long Boss Inner Member
- Allows small diameter long length shafts to be used
- Reduces key stress
- Allows increased distances between shaft ends
- Full shaft engagement avoids the need for spacer collars

Dimensions, weight, inertia and alignment

Coupling size	9	0.12	0.2	0.24	0.37	0.73	1.15	2.15	3.86	5.5
	А	200.0	222.2	238.1	260.3	308.0	358.8	466.7	508.0	571.5
	B1	139.0	152.2	173.5	189.9	233.9	268.4	309.1	343.4	386.1
	B2	54.0	57.2	63.5	69.8	88.9	98.4	119.0	133.4	146.0
	С	3.2	3.2	3.2	3.2	3.2	3.2	4.8	6.4	6.4
	D	50.8	54.0	60.3	66.7	85.7	95.2	114.3	127.0	139.7
	D2	85	95	110	120	145	170	190	210	240
	E	79.4	95.2	101.6	120.6	152.4	184.1	222.2	279.4	330.2
Dimensions (mm)	F	177.8	200.0	212.7	235.0	279.4	323.8	438.15	469.9	542.92
Dimensions (mm)	G	156.5	178	186.5	210	251	295	362	435	501.5
	J	12.7	14.3	15.9	17.5	19.0	19.0	19.0	22.2	25.4
	Q	5	6	6	6	6	6	6	7	8
	R	M8	M8	M8	M10	M10	M12	M12	M12	M12
	S	6	6	6	8	8	10	16	12	12
	Т	M8	M8	M10	M10	M12	M12	M12	M16	M16
	MAX. X	50	60	65	80	95	115	140	170	210
	MAX. Y	55	70	75	85	95	115	140	170	210
	MIN. X&Y Per cavity	30 1	35 1	40 1	40 1	55 1	55 1	70 1	80 1	90 1
Rubber elements	Per coupling	10	12	12	12	12	12	12	14	16
Maximum Speed [rpm] (1)		5250	4725	4410	4035	3410	2925	2250	2070	1820
	W1	4.21	6.42	8.67	11.85	19.43	35.28	53.81	95.50	162.79
Weight (3) (kg)	W2	4.0	5.05	6.38	8.14	13.29	18.41	33.98	43.87	59.0
	W3	4.06	5.82	7.42	10.44	18.03	27.37	47.43	75.39	113.32
	J1	0.0059	0.0121	0.0193	0.0326	0.0770	0.1896	0.4347	1.1833	2.8953
Inertia (3) (kg m²)	J2	0.0232	0.0375	0.0546	0.0887	0.2000	0.3674	1.1035	1.9161	3.4391
	J3	0.0153	0.0270	0.0396	0.0644	0.1475	0.2862	0.7998	1.5120	2.9796
Allowable misalignment (2)										
Radial (mm)		0.75	0.75	0.75	0.75	1.0	1.5	1.5	1.5	1.5
Axial (mm)		1.5	1.5	1.5	1.5	1.5	1.5	1.5	3.0	3.0
Conical (degree)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5


(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.

(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment overtime, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowables.

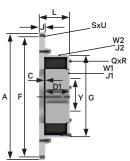
RB Standard SAE Flywheel to Shaft

Features and benefits

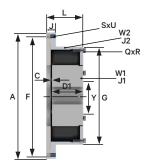
- Wide range of adaptor plates
- Choice of rubber compound
 and hardness
- Short axial length
- Allows the coupling to be adapted to suit most engine flywheels
- Allows control of the torsional vibration system
- Allows the coupling to fit in bell housed applications

Dimensions, weight, inertia and alignment

		0.	24	0.	37	0.	73	1.15		
Coupling size	2	SAE 10	SAE 11.5	SAE 11.5	SAE 14	SAE 11.5	SAE 14	SAE 14	SAE 18	
	А	314.3	352.4	352.4	466.7	352.4	466.7	466.7	571.5	
	С	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	
	D1	60.3	60.3	66.7	66.7	85.7	85.7	95.2	95.2	
	F	295.27	333.38	333.38	438.15	333.38	438.15	438.15	542.92	
	G	186.5	186.5	210	210	251	251	295	295	
	J	20	20	20	20	20	20	20	28	
Dimensions (mm)	L	79.5	79.5	85.8	85.8	104.9	104.9	114.4	122.4	
	0	6	6	6	6	6	6	6	6	
	R	M8	M8	M10	M10	M10	M10	M12	M12	
	S	8	8	8	8	8	8	8	6	
	U	10.5	10.5	10.5	13.5	10.5	13.5	13.5	16.7	
	MAX. Y	75	75	85	85	95	95	115	115	
	MIN. Y	40	40	40	40	55	55	55	55	
Rubber elements	Per cavity	1	1	1	1	1	1	1	1	
Rubber elements	Per coupling	12	12	12	12	12	12	12	12	
Maximum speed (rpm) (1)		3710	3305	3305	2500	3310	2500	2500	2040	
	W1	5.29	5.29	7.49	7.49	12.82	12.82	23.39	23.39	
Weight (3) (kg)	W2	15.71	17.1	19.96	28.76	24.01	35.31	39.03	61.0	
	J1	0.0131	0.0131	0.0233	0.0233	0.0563	0.0563	0.1399	0.1399	
Inertia (3) (kg m²)	J2	0.1922	0.2546	0.3087	0.7487	0.4000	0.8900	1.0274	2.3974	
Allowable misalignment (2)										
Radial (mm)		0.75	0.75	0.75	0.75	1.0	1.0	1.5	1.5	
Axial (mm)		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Conical (degree)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	


(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.

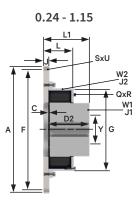
(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment overtime, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowables.


RB Standard SAE Flywheel to Shaft

Keep Plate (2.15 SAE 14 and 5.5 SAE 18)

Dimensions, weight, inertia and alignment

			2.15			3.86		5.5		
Coupling size	2	SAE 14	SAE 18	SAE 21	SAE 18	SAE 21	SAE 24	SAE 18	SAE 21	SAE 24
	А	466.7	571.5	673.1	571.5	673.1	733.4	571.5	673.1	733.4
	С	4.8	4.8	4.8	6.4	6.4	6.4	6.4	6.4	6.4
	D1	114.3	114.3	114.3	127.0	127.0	127.0	139.7	139.7	139.7
	F	438.15	542.92	641.35	542.92	641.35	692.15	542.92	641.35	692.15
	G	362.0	362.0	362.0	435.0	435.0	435.0	501.5	501.5	501.5
	J	35.0	28.0	28.0	28.0	31.0	31.0	41.4	28.0	31.0
Dimensions (mm)	L	135.05	143.0	143.0	157.35	160.35	160.35	162.05	170.0	173.05
	0	6	6	6	7	7	7	8	8	8
	R	M12								
	S	8	6	12	6	12	12	6	12	12
	U	13.2	16.7	16.7	16.7	16.7	22	16.7	16.7	22
	MAX. Y	140	140	140	170	170	170	210	210	210
	MIN. Y	70	70	70	80	80	80	90	90	90
Rubber elements	Per cavity	1	1	1	1	1	1	1	1	1
Rubbel elements	Per coupling	12	12	12	14	14	14	16	16	16
Maximum speed (rpm) (1)		2500	2040	1800	2040	1800	1590	2040	1800	1590
	W1	35.88	35.88	35.88	62.81	62.81	62.81	102.09	102.09	102.09
Weight (3) (kg)	W2	50.42	79.17	92.19	86.46	110.35	120.33	79.14	117.21	135.46
$ (2) \rangle \langle (1 - 2) \rangle$	J1	0.3227	0.3227	0.3227	0.8489	0.8489	0.8489	1.9633	1.9633	1.9633
Inertia (3) (kg m²)	J2	1.6535	3.2935	4.9935	3.9461	6.3661	8.1461	4.5684	7.3291	9.6691
Allowable misalignment (2)										
Radial (mm)		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Axial (mm)		2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0
Conical (degree)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5


(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.

(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment overtime, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure

that these do not exceed the manufacturers allowables.

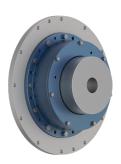
RB Standard SAE Flywheel to Shaft with Increased Shaft Engagement

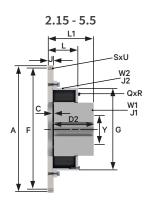
Features and benefits

- Long Boss Inner Members
- Allows small diameter long length shafts to be used
- Reduces key stress
- Allows increased distance between shaft end and flywheel
- Full shaft engagement avoids the need for spacer collars

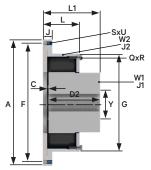
Dimensions, weight, inertia and alignment

		0.	24	0.	37	0.	73	1.1	1.15	
Coupling size	2	SAE 10	SAE 11.5	SAE 11.5	SAE 14	SAE 11.5	SAE 14	SAE 14	SAE 18	
	A	314.3	352.4	352.4	466.7	352.4	466.7	466.7	571.5	
	С	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	
	D2	110	110	120	120	145	145	170	170	
	F	295.27	333.38	333.38	438.15	333.38	438.15	438.15	542.92	
	G	186.5	186.5	210	210	251	251	295	295	
	J	20	20	20	20	20	20	20	28	
	L	79.5	79.5	85.8	85.8	104.9	104.9	114.4	122.4	
Dimensions (mm)	L1	129.2	129.2	139.1	139.1	164.2	164.2	189.2	197.2	
	Q	6	6	6	6	6	6	6	6	
	R	M8	M8	M10	M10	M10	M10	M12	M12	
	S	8	8	8	8	8	8	8	6	
	U	10.5	10.5	10.5	13.5	10.5	13.5	13.5	16.7	
	MAX. Y	75	75	85	85	95	95	115	115	
	MIN. Y	40	40	40	40	55	55	55	55	
	Per cavity	1	1	1	1	1	1	1	1	
Rubber elements	Per coupling	12	12	12	12	12	12	12	12	
Maximum speed (rpm) (1)		3710	3305	3305	2500	3305	2500	2500	2040	
	W1	8.67	8.67	11.85	11.85	19.43	19.43	35.28	35.28	
Weight (3) (kg)	W2	15.71	17.10	19.96	28.76	24.01	35.31	39.03	61.00	
(a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	J1	0.0193	0.0193	0.0326	0.0326	0.0770	0.0770	0.1896	0.1896	
Inertia (3) (kg m²)	J2	0.1922	0.2546	0.3087	0.7487	0.4000	0.8900	1.0274	2.3974	
Allowable misalignment (2)										
Radial (mm)		0.75	0.75	0.75	0.75	1.0	1.0	1.5	1.5	
Axial (mm)		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Conical (degree)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	


(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.


(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment overtime, it is recommended that

initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure


that these do not exceed the manufacturers allowables.

RB Standard SAE Flywheel to Shaft with Increased Shaft Engagement

Keep Plate (2.15 SAE 14 and 5.5 SAE 18)

Dimensions, weight, inertia and alignment

			2.15			3.86		5.5		
Coupling size	2	SAE 14	SAE 18	SAE 21	SAE 18	SAE 21	SAE 24	SAE 18	SAE 21	SAE 24
	А	466.7	571.5	673.1	571.5	673.1	733.4	571.5	673.1	733.4
	С	4.8	4.8	4.8	6.4	6.4	6.4	6.4	6.4	6.4
	D2	190	190	190	210	210	210	240	240	240
	F	438.15	542.92	641.35	542.92	641.35	692.15	542.92	641.35	692.15
	G	362.0	362.0	362.0	435.0	435.0	435.0	501.5	501.5	501.5
	J	35.0	28.0	28.0	28.0	31.0	31.0	41.4	28.0	31.0
Dimensions (mm)	L	135	143.0	143.0	157.4	160.4	160.4	162.05	170.0	173.0
Dimensions (mm)	L1	210.7	219.7	219.7	240.4	243.4	243.4	262.4	271.3	273.3
	Q	6	6	6	7	7	7	8	8	8
	R	M12								
	S	8	6	12	6	12	12	6	12	12
	U	13.5	16.7	16.7	16.7	16.7	22	16.7	16.7	22
	MAX. Y	140	140	140	170	170	170	210	210	210
	MIN. Y	70	70	70	80	80	80	90	90	90
D. I. I. and a state of the	Per cavity	1	1	1	1	1	1	1	1	1
Rubber elements	Per coupling	12	12	12	14	14	14	16	16	16
Maximum speed (rpm) (1)		2500	2040	1800	2040	1800	1590	2040	1800	1590
	W1	53.81	53.81	53.81	95.50	95.50	95.50	162.79	162.79	162.79
Weight (3) (kg)	W2	50.42	79.17	92.19	86.46	110.35	120.33	79.14	117.21	135.46
l_{1}	J1	0.4347	0.4347	0.4347	1.1833	1.1833	1.1833	2.8953	2.8953	2.8953
Inertia (3) (kg m²)	J2	1.6535	3.2935	4.9935	3.9461	6.4661	8.1461	4.5684	7.3291	9.6691
Allowable misalignment (2)										
Radial (mm)		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Axial (mm)		2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0
Conical (degree)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.

(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment overtime, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowables.(3) Weights and inertias are based on the minimum bore size.

RB Technical Data

1.1 Torque Capacity - Diesel Engine Drives

The RB Coupling is selected on the "Nominal Torque TKN" without service factors for Diesel Drive applications.

The full torque capacity of the coupling for transient vibration whilst passing through major criticals on run up, is published as the maximum torque. (TKMAX = 3 x TKN).

There is additional torque capacity built within the coupling for short circuit and shock torques, which is 3 x TKMAX. The published "Vibratory Torque TKW", relates to the amplitude of the permissible torque fluctuation. The vibratory torque values shown in the technical data are at the frequency of 10Hz. The allowable vibratory torque at higher or lower frequencies fe = TKW.

The measure used for acceptability of the coupling under vibratory torque, is published as "Allowable dissipated heat at ambient temperature 30°C".

1.2 Industrial Drives

For industrial Electrical Motor Applications refer to the "Selection Procedures", and base the selection on TKMAX with the appropriate service factors.

The service factors used in the "Selection Procedures" are based upon 50 years'experience of drives and their shock frequency/amplitude. The stated TKMAX quoted should not be exceeded by design, without reference to Renold Hi-Tec Couplings.

Care should be taken in the design of couplings with shaft brakes, to ensure that coupling torques are not increased by severe deceleration.

2.0 Stiffness Properties

The Renold Hi-Tec Coupling remains fully flexible under all torque conditions. The RB series is a non-bonded type operating with the Rubber-in-Compression principle.

2.1 Axial Stiffness

When subject to axial misalignment, the coupling will have an axial resistance which gradually reduces due to the effect of vibratory torque.

Given sufficient axial force, as shown in the technical data, the coupling will slip to its new position immediately.

2.2 Radial Stiffness

The radial stiffness of the coupling is torque dependent, and is as shown in the technical data.

2.3 Torsional Stiffness

The torsional stiffness of the coupling is dependent upon applied torque (see technical data) and temperature.

2.3 Prediction of the System Torsional Vibration Characteristics

An adequate prediction of the system's torsional vibration characteristics, can be made by the following method:

- 2.4.1 Use the torsional stiffness as shown in the technical data, which is based upon data measured at a 30°C ambient temperature (C_{Tdvn}).
- 2.4.2 Repeat the calculation 2.4.1, but using the maximum temperature correction factor S_{t100} , and dynamic magnifier correction factor, M_{100} , for the selected rubber. Use tables on page 13 to adjust values for both torsional stiffness and dynamic magnifier. ie. $C_{t100} = C_{Tdvn} X S_{t100}$
- 2.4.3 Review calculations 2.4.1 and 2.4.2 and if the speed range is clear of criticals which do not exceed the allowable heat dissipation value as published in the catalogue, then the coupling is considered suitable for the application with respect to the torsional vibration characteristics. If there is a critical in the speed range, then actual temperature of the coupling will need to be calculated at this speed

RB Technical Data

Rubber grade	Temp _{max} °C	St
Si70	200	S _{t200} = 0.48
SM60	100	S _{t100} = 0.75
SM70	100	S _{t100} =0.63
SM80	100	S _{t100} =0.58

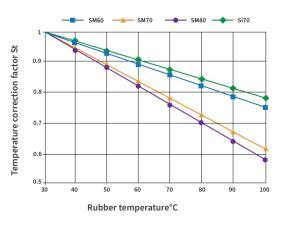
SM70 is considered "standard"

Rubber grade	Dynamic magnifier at 30°C (M30)	Dynamic magnifier at 100°C (M <u>100</u>)
SM60	8	10.7
SM70	6	9.5
SM80	4	6.9
Si70	7.5	M ₂₀₀ = 15.63

SM70 is considered "standard"

2.5 Prediction of the Actual Coupling Temperature and Torsional Stiffness

- 2.5.1 Use the torsional stiffness as published in the catalogue, this is based upon data measured at 30°C and the dynamic magnifier at 30°C. (M₃₀).
- 2.5.2 Compare the synthesis value of the calculated heat load in the coupling (Pκ) at the speed of interest, to the "Allowable Heat Dissipation" (Pĸw)


The coupling temperature rise

$$^{\circ}C = \text{Temp}_{\text{coup}} = \left(\frac{Pk}{Pkw}\right) x 70$$

The coupling temperature = ϑ

- $\vartheta = \text{Temp}_{\text{coup}} + \text{Ambient Temp}.$
- 2.5.3 Calculate the temperature correction factor, S_t, from 2.6 (if the coupling temperature > 100 $^{\circ}$ C, then use S_{t100}). Calculate the dynamic Magnifier as per 2.7. Repeat the calculation with the new value of coupling stiffness and dynamic magnifier.
- 2.5.4 Calculate the coupling temperature as per 2.5. Repeat calculation until the coupling temperature agrees with the correction factors for torsional stiffness and dynamic magnifier used in the calculation.

2.6 Temperature correction factor

2.7 Dynamic magnifier correction factor

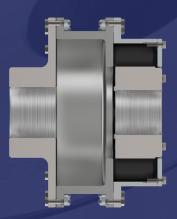
The Dynamic Magnifier of the rubber is subject to temperature variation in the same way as the torsional stiffness.

$$MT = \frac{M_{30}}{S_t} \qquad \psi_T = \psi_{30} x S_t$$

Rubber grade	Dynamic magnifier (M ₃₀)	Relative dampingψ30
SM60	8	0.78
SM70	6	1.05
SM80	4	1.57
Si70	7.5	0.83

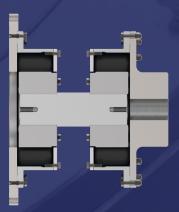
SM70 is considered "standard"

RB Technical Data


Coupling size		0.12	0.2	0.24	0.37	0.73	1.15	2.15	3.86	5.5
Nominal torque TKN(kNm)	0.314	0.483	0.57	0.879	1.73	2.731	5.115	9.159	13.05
Maximum torque TKmax	(kNm)	0.925	1.425	1.72	2.635	5.35	8.1	15.303	27.4	41.0
Vibratory torque TKW (kNm)	0.122	0.188	0.222	0.342	0.672	1.062	1.989	3.561	5.075
	Si70	252	315	346	392	513	575	710	926	1144
Allowable dissipated heat	SM60	90	112	125	140	185	204	246	336	426
at amb. temp 30°С Ркw (W) Ркw	SM70	98	123	138	155	204	224	270	369	465
	SM80	100	138	154	173	228	250	302	410	520
Dynamic Torsional Stif C _{Tdyn} (MNm/rad)										
	Si70	0.004	0.006	0.006	0.010	0.021	0.031	0.060	0.091	0.119
0.25 nominal torque	SM60	0.007	0.009	0.010	0.016	0.032	0.049	0.093	0.142	0.186
0.25 Hommat torque	SM70	0.011	0.014	0.017	0.026	0.052	0.079	0.150	0.230	0.300
	SM80	0.016	0.021	0.025	0.039	0.079	0.119	0.225	0.346	0.453
	Si70	0.013	0.017	0.020	0.030	0.062	0.093	0.176	0.271	0.355
0.50 nominal torque	SM60	0.016	0.021	0.025	0.038	0.078	0.118	0.223	0.343	0.449
0.50 Hommat torque	SM70	0.022	0.028	0.034	0.052	0.105	0.159	0.300	0.460	0.602
	SM80	0.026	0.033	0.040	0.062	0.125	0.189	0.358	0.549	0.719
	Si70	0.030	0.038	0.046	0.070	0.142	0.215	0.407	0.625	0.818
0.75 nominal torque	SM60	0.035	0.045	0.054	0.082	0.167	0.253	0.479	0.735	0.962
0.75 hommat torque	SM70	0.043	0.055	0.066	0.101	0.205	0.310	0.586	0.900	1.178
	SM80	0.049	0.063	0.076	0.117	0.238	0.360	0.680	1.043	1.366
	Si70	0.050	0.064	0.077	0.118	0.240	0.363	0.686	1.053	1.379
1.0 nominal torque	SM60	0.057	0.073	0.088	0.134	0.273	0.413	0.780	1.197	1.567
	SM70	0.066	0.085	0.103	0.157	0.319	0.483	0.912	1.400	1.833
	SM80	0.078	0.100	0.121	0.185	0.377	0.570	1.077	1.653	2.164
	Si70 SM60	1153 1020	1424 1260	1622 1435	1801 1594	2391 2116	2610 2310	3243 2870	4226 3740	5343 4728
Radial stiffness (N/mm) at no load	SM70	1020	1550	1455	1962	2586	2845	3530	4600	5810
	SM80	1728	2135	2430	2700	3654	3915	4860	6330	8008
	Si70	2096	2594	2948	3335	4335	4754	5904	7690	9726
Radial stiffness (N/mm)	SM60	2046	2536	2880	3207	4250	4650	5780	7520	9510
at TKN	SM70	2134	2638	3000	3435	4396	4835	6000	7820	9890
	SM80	2310	2855	3250	3610	4885	5235	6500	8465	10700
	Si70	788	962	1077	1225	1589	1780	2202	2886	3663
Axial stiffness (N/mm) at	SM60	1030	1250	1400	1600	2095	2310	2850	3700	4700
no load	SM70	1100	1350	1510	1710	2200	2500	3100	4100	5200
	SM80	2940	3690	4060	4620	6060	6700	8220	10760	13580
Manual III (19)	Si70	540	675	750	850	1100	1230	1500	1950	2500
Max axial force (1) at TKN (N)	SM60 SM70	1080 1150	1350 1440	1500 1600	1700 1800	2200 2360	2460 2600	3000 3200	3900 4100	5000 5300
	SM80	1300	1600	1760	2000	2600	2900	3500	4600	5800

NB. SM70 is supplied as standard rubber grade with options of rubber grades SM60 or SM80, if these are considered a better solution to a dynamic application problem. It should be noted that for operation above 80% of the declared maximum coupling speed, the coupling should be dynamically balanced. (1) The Renold Hi-Tec Coupling will "slip" axially when the maximum axial force is reached.

Design Variations


The RB Coupling can be adapted to meet customer requirements, as can be seen from some of the design variations shown below. For a more comprehensive list, contact Renold Hi-Tec.

Spacer Coupling

Used to increase distance between shaft ends and allow easy access to driven and driving machines.

Cardan Shaft Coupling

Used to increase the distance between shaft ends and give a higher misalignment capability.

Coupling with Long Boss Inner Member

Coupling with long boss inner member and large boss driving flange for use on vertical applications.

Brake Drum Coupling

Coupling with brake drum for use on cranes, fans and conveyor drives, (brake disk couplings are available).

Global services

Head office

Renold locations

Internal support

Sales team embedded in the manufacturing site with unrivalled product knowledge

Large engineering team Our team can design a quality coupling

to match your exact requirements

Manufacturing facility

Designed and manufactured in house by Renold; giving ultimate control on our solutions

History and Longevity

Manufacturing in the UK for over 100 years and commitment in our facilities for the long term, we are here to stay

Excellent Communication

From an accessible sales team, weekly order updates and a global sales network we make it easy to communicate

Record investment

Heavy investment in our business; spending millions of pounds upgrading CNC equipment, metrology arms and the newest software and test rigs

For your local Renold sales and service locatio	n
+44 (0) 29 2079 2737	- -
cardiff.sales@renold.com	\bowtie
www.renold.com	
Wentloog Corporate Park Newlands Road, Cardiff CF3 2EU	\bigcirc

